Top Menu

Soft Matter

a. Wetting of soft deformable surfaces

Related recent publication

1. S. Karpitschka, et al., “Inverted Cheerios eff ect: Liquid drops attract or repel by elasto-capillarity.” Proceedings of the National Academy of Sciences, USA, 113, 7403-7477 (2016)

2.S. Karpitschka, et al. “Droplets move over viscoelastic substrates by surfing a ridge.” Nature Communications 4, 7891(1-6) (2015). 

3. L. A. Lubbers, et al., “Drops on soft solids: Free energy and double transition of contact angles Journal of Fluid Mechanics 747, R1 (2014).

Collaboration: Prof. Jacco Snoeijer (Univ. of Twente)

Involved Graduate Students: Haoyuan Jing, Shayandev Sinha

 

 

b. Adhesion on membranes and soft surfaces

Related recent publication

1. S. Sinha# and S. Das*, “Role of Shuttleworth effect in adhesion on elastic surfaces.” MRS Advances (DOI: 10.1557/adv.2016.218) (2016).

2. S. Sinha# and S. Das*, “Under-water adhesion of rigid spheres on soft, charged surfaces.” Journal of Applied Physics, 118, 195306 (2015).

Involved Graduate Students: Shayandev Sinha, Haoyuan Jing

 

c. Polymer and Polyelectrolyte Brushes

Related recent publication

1. H. Li#, G. Chen#, and S. Das*, “Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.” Colloids and Surfaces B: Biointerfaces147, 180-190 (2016).

2. G. Chen# and S. Das*, “Anomalous shrinking-swelling of nano-confined end charged polyelectrolyte brushes: Interplay of confinement and electrostatic effects.” Journal of Physical Chemistry B, 120, 6848-6857 (2016).

3. G. Chen#, H. Li#, and S. Das*, “Scaling relationships for spherical polymer brushes revisited.” Journal of Physical Chemistry B, 120, 5272-5277 (2016).

4. J. Patwary#, G. Chen#, and S. Das*, “Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density.” Microfluidics and Nanofluidics  20, 37 (2016).

5. G. Chen# and S. Das*, “Scaling laws and ionic current inversion in polyelectrolyte-grafted nanochannels.” Journal of Physical Chemistry B119, 12714-12726 (2015).

6. S. Das*, M. Banik, G. Chen#, S. Sinha#, and R. Mukherjee, “Polyelectrolyte brushes: Theory, modelling, synthesis, and applications.” Soft Matter, DOI: 10.1039/C5SM01962A (2015).

7. G. Chen# and S. Das*, “Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density.” Journal of Applied Physics, 117, 185304 (2015).

8. K. McDaniel#, F. Valcius#, J. Andrews#, and S. Das*, “Electrostatic potential distribution of a soft spherical particle with a charged core and pH dependent charge density”. Colloids and Surfaces B: Biointerfaces, 127, 143 (2015) (Selected as cover article for March issue of the journal).

9. G. Chen# and S. Das*, “Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization”, Journal of Colloid and Interface Science445, 357 (2015).

10. G. Chen# and S. Das*, “Electrostatics of soft charged interfaces with pH-dependent charge density: Effect of consideration of appropriate hydrogen ion concentration distribution”. RSC Advances, 5, 4493 (2015).

11. J. Andrews# and S. Das*, “Effect of finite ion sizes in electric double layer mediated interaction force between two soft charged plates.” RSC Advances, 5, 46873-46880 (2015).

12. S. Das*, “Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 69 (2014).

13. S. Chanda#, S. Sinha, and S. Das*, “Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converter”, Soft Matter, 10, 7558 (2014).

Involved Graduate Students: Guang Chen, Jahin Patwary, Parth Desai, Joseph Andrews (Graduated)