Top Menu


Google Scholar Link

#Denotes Graduate /Undergraduate students and summer interns working/worked with Prof. Das in University of Maryland and University of Alberta

*Denotes the corresponding authorship


90. A. Pandey, S. Karpitschka, L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J. H. Snoeijer, “Dynamical Theory of the Inverted Cheerios E ffect.” Soft Matter (Accepted for Publication).

89. S. Sinha#, H. Jing#, and S. Das*, “Positive zeta potential of a negatively-charged semi-permeable plasma membrane.” Applied Physics Letters (Accepted for Publication).

88. Y. Gu#, D. Gutierrez, S. Das*, and D. Hines*, “Inkwells for On-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing.” Journal of Micromechanics and Microengineering, DOI: 10.1088/1361-6439/aa817f.

87. P. R. Desai#, S. Sinha#, and S. Das*, “Compression of polymer brushes in weak interpenetration regime: Scaling Theory and Molecular Dynamics Simulations.” Soft Matter13, 4159-4166 (2017).

86. Y. Wang#, J. E. Andrews#, L. Hu, and S. Das*, “Drop Spreading on a Superhydrophobic Surface: Pinned Contact Line and Bending Liquid Surface.” Physical Chemistry Chemical Physics, 19, 14442-14452 (2017).

85. J. E. Andrews#, Y. Wang#, S. Sinha#, P. W. Chung, and S. Das*, “Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures.” The Journal of Physical Chemistry C, 121, 10010-10017 (2017).

84. F. Chen, A. Gong, M. Zhu, G. Chen#, S. Lacey, F. Feng, Y. Li, Y. Wang, J. Dai, Y. Yao, J. Song, B. Liu, K. Fu, S. Das, and L. Hu, “Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment.”, ACS Nano11, 4275-4282 (2017).  (media coverage: IndiaToday, Business Standard, India;;; Business Recorder; Science Daily; News Wise;; Youtube Video.

83. S. Sinha#, H. Jing#, and S. Das*, “Charge Inversion and External Salt Effect in Semi-Permeable Membrane Electrostatics.” Journal of Membrane Science533, 364-377 (2017)

82. G. Chen# and S. Das*, “Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes.” The Journal of Physical Chemistry B, 121, 3130-3141 (2017).

81. H. Jing#, S. Sinha#, and S. Das*, “Elasto-electro-capillarity: Drop equilibrium on a charged, elastic solid.” Soft Matter, 13, 554-566 (2017). (selected as the back cover article) (media coverage:;

80. G. Chen# and S. Das*, “Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.” Electrophoresis, 38, 720-729 (2017).

79. Y. Wang, G. Sun, J. Dai, G. Chen#, J. Morgenstern, Y. Wang#, S. Kang, M. Zhu, S. Das, L. Cui, and L. Hu, “High-Performance, Low Tortuosity Wood Carbon Monolith Reactor.” Advanced Materials, 29, 1604257 (2017).

78. S. Sinha#, V. Padia#, K. I. Bae#, G. Chen#, and S. Das*, “Effect of electric double layer on electro-spreading dynamics of electrolyte drops” Colloids and Surfaces A: Physicochemical and Engineering Aspects514, 209-217 (2017).


77. M. Razi, S. Sinha#, P. R. Waghmare, S. Das*, and T. Thundat, “Effect of Steam-Assisted Gravity Drainage (SAGD) produced water properties on oil/water transient interfacial tension.” Energy and Fuels, 30, 10714-10720 (2016).

76. H. Li#, G. Chen#, and S. Das*, “Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.” Colloids and Surfaces B: Biointerfaces147, 180-190 (2016).

75. S. Sinha#, L. Myers#, and S. Das*, “Effect of solvent polarization on electroosmotic transport in a nanofluidic channel.” Microfluidics and Nanofluidics, 20, 119 (2016).

74. G. Chen# and S. Das*, “Anomalous shrinking-swelling of nano-confined end charged polyelectrolyte brushes: Interplay of confinement and electrostatic effects.” Journal of Physical Chemistry B, 120, 6848-6857 (2016).

73. J. Andrews#, S. Sinha#, P. W. Chung, and S. Das*, “Wetting dynamics of a water nanodrop on graphene.” Physical Chemistry Chemical Physics, 18, 23482-23493 (2016). (Selected as the Inside Front Cover Article) (media coverage:

72. G. Chen#, H. Li#, and S. Das*, “Scaling relationships for spherical polymer brushes revisited.” Journal of Physical Chemistry B, 120, 5272-5277 (2016).

71. S. Karpitschka, A. Pandey, L.A. Lubbers, J.H. Weijs, L. Botto, S. Das, B. Andreotti, and J.H. Snoeijer, “Inverted Cheerios eff ect: Liquid drops attract or repel by elasto-capillarity.” Proceedings of the National Academy of Sciences, USA, 113, 7403-7477 (2016) (media coverage: New York Times, Clarke School,,,,, youtube_movie

70. Z. Liu, Y. Wang, K. Fu, Z. Wang, Y. Yao, J. Wan, J. Dai, S. Das*, and L. Hu, “Solvo-thermal microwave-powered two-dimensional materials exfoliation.” Chemical Communications, 52, 5757-5760 (2016).

69. S. Sinha# and S. Das*, “Role of Shuttleworth effect in adhesion on elastic surfaces.” MRS Advances (DOI: 10.1557/adv.2016.218) (2016).

68. Z. Liu, L. Zhang, R. Wang, S. Poyraz, J. Cook, M. Bozack, S. Das, X. Zhang, and L. Hu, “Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides.” Scientific Reports, 6, 22503(1-8) (2016). (media coverage:

67. S. Sinha#, K. I. Bae#, and S. Das*, “Electric Double Layer effects in water separation from water-in-oil emulsions.” Colloids and Surfaces A: Physicochemical and Engineering Aspects489, 216-222 (2016). 

66. J. Patwary#, G. Chen#, and S. Das*, “Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density.” Microfluidics and Nanofluidics  20, 37 (2016).


65. S. Sinha# and S. Das*, “Under-water adhesion of rigid spheres on soft, charged surfaces.” Journal of Applied Physics, 118, 195306 (2015).

64. G. Chen# and S. Das*, “Scaling laws and ionic current inversion in polyelectrolyte-grafted nanochannels.” Journal of Physical Chemistry B119, 12714-12726 (2015).

63. J. Liu, R. Giakwad, A. Hande, S. Das, and T. Thundat, “Mapping and quantifying surface charges on clay nanoparticles.” Langmuir31, 10469-10476 (2015).

62. S. Sinha#, K. A. Mahmoud, and S. Das*, “Conditions for spontaneous oil-water separation with oil-water separators.” RSC Advances5, 80184-80191 (2015).

61. S. Das*, M. Banik, G. Chen#, S. Sinha#, and R. Mukherjee, “Polyelectrolyte brushes: Theory, modelling, synthesis, and applications.” Soft Matter, DOI: 10.1039/C5SM01962A (2015).

60. M. Hassanpourfarda, Z. Nikakhtari, R. Ghosh, S. Das, T. Thundat, Y. Liu, and A. Kumar, “Bacterial floc mediated rapid streamer formation in creeping flows.” Scientific Reports 5, 13070(1-12) (2015). (media coverage:

59. S. Karpitschka, S. Das, M. van Gorcum, H. Perrin, B. Andreotti and J.H. Snoeijer, “Droplets move over viscoelastic substrates by surfing a ridge.” Nature Communications 4, 7891(1-6) (2015). (media coverage:;;;;

58. J. Andrews# and S. Das*, “Effect of finite ion sizes in electric double layer mediated interaction force between two soft charged plates.” RSC Advances, 5, 46873-46880 (2015).

.57. G. Chen# and S. Das*, “Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density.” Journal of Applied Physics, 117, 185304 (2015).

56. K. McDaniel#, F. Valcius#, J. Andrews#, and S. Das*, “Electrostatic potential distribution of a soft spherical particle with a charged core and pH dependent charge density”. Colloids and Surfaces B: Biointerfaces, 127, 143 (2015) (Selected as cover article for March issue of the journal). (media coverage:;)

55. G. Chen# and S. Das*, “Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Hückel linearization”, Journal of Colloid and Interface Science445, 357 (2015).

54. R. Gaikwad, A. Hande, S. Das, S. K. Mitra, and T. Thundat, “Determination of charge on asphaltene nano-aggregates in air using electrostatic force microscopy”. Langmuir, 31, 679 (2015).

53. G. Chen# and S. Das*, “Electrostatics of soft charged interfaces with pH-dependent charge density: Effect of consideration of appropriate hydrogen ion concentration distribution”. RSC Advances, 5, 4493 (2015).


52. S. Das and A. Kumar, “Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets”. Scientific Reports4, 7126 (2014). (media coverage:

51. S. Das*, S. Chanda#, J. C. T. Eijkel, N. R. Tas, S. Chakraborty, and S. K. Mitra, “Filling of charged cylindrical capillaries”. Physical Review E, 90, 043011 (2014).

50. S. Das*, “Explicit interrelationship between Donnan and surface potentials and explicit quantification of capacitance of charged soft interfaces with pH-dependent charge density”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 69 (2014).

49. S. Chanda#, S. Sinha, and S. Das*, “Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converter”, Soft Matter, 10, 7558 (2014).

48. L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, and J. H. Snoeijer, “Drops on soft solids: Free energy and double transition of contact angles Journal of Fluid Mechanics 747, R1 (2014).

———— Publications Before Joining University of Maryland, College Park————

47. S. Das, T. Thundat, and S. K. Mitra, “Modeling of asphaltene transport and separation in presence of finite aggregation effects in combined electroosmotic-electrophoretic microchannel transport”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 446, 23 (2014).

46. S. Chanda# and S. Das*, “Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution”, Physical Review E 89, 012307 (2014).

45. M. Mehranfar, R. Gaikwad, S. Das, S. K. Mitra, and T. Thundat, “Effect of temperature on morphologies of evaporation-triggered Asphaltene nanoaggregates” Langmuir 30, 800 (2014).


44. S. Das, A. Guha, and S. K. Mitra, “Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping Electric Double Layers”, Analytica Chimica Acta 808, 159 (2013).

43. S. Das* and S. K. Mitra, “Electric double-layer interactions in a wedge geometry: Change in contact angle for drops and bubbles”, Physical Review E 88, 033021 (2013).

42.  S. Das and S. K. Mitra, “Different regimes in vertical capillary filling”, Physical Review E 87, 063005 (2013).

41. P. R. Waghmare, S. Das, and S. K. Mitra, “Drop deposition on under-liquid low energy surfaces”, Soft Matter 9, 7437 (2013). (Selected as a Cover Article). (media coverage:;;,;)

40. P. R. Waghmare, S. Das, and S. K. Mitra, “Under-water superoleophobic glass: Unexplored role of surfactant-rich solvent”, Scientific Reports 3, 1862 (2013). (media coverage:

 39. S. Das, S. Chakraborty, and S. K. Mitra, “Contribution of interfacial electrostriction in surface tension”, Journal of Colloid and Interface Science 400, 130 (2013).

38. R. P. Misra, S. Das, and S. K. Mitra, “Electric Double Layer force between charged surfaces: Effect of solvent polarization”, The Journal of Chemical Physics 138, 114703 (2013).

37. S. Das, T. Thundat, and S. K. Mitra, “Analytical model for zeta potential of asphalting”, Fuel 108, 543 (2013).


36. S. Das, P. R. Waghmare, S. K. Mitra, “Early regimes of capillary filling”, Physical Review E 86, 067301 (2012).

35. S. Das, S. K. Mitra, and S. Chakraborty, “Ring stains in the presence of electromagnetohydrodynamic interactions”, Physical Review E 86, 056317 (2012).

34. A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti, “Contact Angles on a Soft Solid: From Young’s Law to Neumann’s Law”, Physical Review Letters 108, 094301 (2012).

33. S. Das, R. P. Misra, T. Thundat, S. Chakraborty, and S. K. Mitra,”Modeling of asphaltene transport and separation in presence of finite aggregation effects in pressure-driven microchannel flow”, Energy and Fuels 26, 5851 (2012).

32. S. Das, S. K. Mitra, and S. Chakraborty, “Wenzel and Cassie-Baxter states of an electrolytic drop on charged surfaces”, Physical Review E 86, 011603 (2012).

31. S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: Liquid droplet “Coffee Stain” effect”, RSC Advances 2, 8390 (2012).

30. S. Das, S. Chakraborty, and S. K. Mitra, “Magnetohydrodynamics in narrow fluidic channels in presence of spatially non-uniform magnetic fields: Framework for combined magnetohydrodynamic and magnetophoretic particle transport”, Microfluidics and Nanofluidics, 13, 799 (2012).

29. S. Das, S. Chakraborty, and S. K. Mitra, “Redefining electrical double layer thickness in narrow confinements: Effect of solvent polarization”, Physical Review E 85, 051508 (2012).

28. S. Das, S. Chakraborty, and S. K. Mitra, “Ring stains in the presence of electrokinetic interactions”, Physical Review E, 85, 046311 (2012).

27. S. Das*, P. Dubsky, A. van den Berg, J. C. T. Eijkel, “Concentration polarization in translocation of DNA through nanopores and nanochannels”, Physical Review Letters 108, 138101 (2012).

26. A. Marchand, S. Das, J. H. Snoeijer, and B. Andreotti, “Capillary pressure and contact line force on a soft solid”, Physical Review Letters 108, 094301 (2012).

25. S. Das*, “Electric-double-layer potential distribution in multiple layer immiscible electrolytes: Effect of finite ion sizes”, Physical Review E 85, 012502 (2012).


24. B. Andreotii, A. Marchand, S. Das, and J. H. Snoeijer, “Elastocapillary instability under partial wetting conditions: Bending versus buckling”, Physical Review E 84, 061601 (2011).

23. S. Das*, “Effect of added salt on preformed surface nanobubbles: A scaling estimate”, Physical Review E 84, 036303 (2011).

22. S. Das* and S. Hardt, “Electric-Double-Layer potential distribution in multiple-layer immiscible electrolytes”, Physical Review E 84, 022502 (2011).

21. S. Das, A. Marchand, B. Andreotti and J. H. Snoeijer, “Elastic deformation due to tangential capillary forces”, Physics of Fluids 23, 072005 (2011).

20. S. Das and S. Chakraborty, “Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena”, Physical Review E 84, 012501 (2011).

19. S. Das*, “Effect of impurities in the description of surface nanobubbles: Role of non-idealities in the surface layer”, Physical Review E 83, 066315 (2011).

18. S. Das and S. Chakraborty, “Probing the solvation decay length for characterizing hydrophobicity-induced bead-bead attractive interactions in polymer chains”, Journal of Molecular Modeling 17, 1911 (2011).


17. S. Das*, J. H. Snoeijer, and D. Lohse, “Effect of impurities in description of surface nanobubbles”, Physical Review E 82, 056310 (2010). (This paper has been selected for the November 15, 2010 issue of Virtual Journal of Nanoscale Science and Technology in the section “Surface and Interface Properties”)

16. S. Das and S. Chakraborty, “Effect of confinement on the collapsing mechanism of a flexible polymer chain”, The Journal of Chemical Physics 133, 174904 (2010). (This paper has been selected for the Novemeber 15, 2010 issue of Virtual Journal of Biological Physics Research in the section “Fundamental Polymer Statics/Dynamics”).

15. S. Das and S. Chakraborty, “Effect of conductivity variations within the Electric Double Layer on the streaming potential estimation in narrow fluidic confinements”, Langmuir 26, 11589 (2010).

14. S. Das and S. Chakraborty, “Transport of flexible molecules in narrow confinements”, International Journal of Micro-Nanoscale Transport Processes 1, 97 (2010) (Invited  Review).

13. S. Das and S. Chakraborty, “Augmented surface adsorption characteristics by employing patterned  microfluidic substrates in conjunction with transverse electric fields”, Microfluidics and Nanofluidics 8, 313 (2010).


12. S. Das and S. Chakraborty, “Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions”, Langmuir 25, 9863 (2009).

11. T. Das, S. Das and S. Chakraborty, “Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows”, The Journal of Chemical Physics 130, 244904 (2009).


10. S. Das and S. Chakraborty, “Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels”, Langmuir 24, 7704 (2008).

9. S. Chakraborty and S. Das, “Streaming field induced convective transport and its influence on the electroviscous effects in narrow fluidic confinements beyond the Debye Huckel limits”, Physical Review E 77, 037303 (2008).

8. R. Lambert, S. Das, M. Madou, S. Chakraborty and R. Rangel, “Simulation of a  moving mechanical actuator for fast biomolecular synthesis process”, International Journal of Heat and Mass Transfer 51, 4367 (2008).

7. S. Das and S. Chakraborty, “Separation of charged macromolecules in nanochannels within the continuum regime: Effects of wall interactions and hydrodynamic confinements”, Electrophoresis 29, 1115 (2008).


6. S. Das, K. Subramanian, and S. Chakraborty, “Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels”, Colloids and Surfaces B58, 203 (2007).

5. S. Das and S. Chakraborty, “Transverse electrodes for improved DNA hybridization in microchannels”, AIChE Journal, 53, 1086 (2007).


4. S. Das and S. Chakraborty, “Augmentation of macromolecular adsorption rate through transverse electric fields generated across patterned walls of a microfluidic channel”, Journal of Applied Physics 99, 1 (2006). (This paper has been selected for the July 15, 2006 issue of Virtual Journal of Biological Physics Research in the section “Instrumentation Development).

3. S. Das and S. Chakraborty, “Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid”, Analytica Chimica Acta 559, 15 (2006).

2. S. Das, T. Das, and S. Chakraborty, “Analytical solutions for the rate of DNA hybridization in a microchannel in the presence of pressure-driven and electro-osmotic flows”, Sensors and Actuators B114, 957 (2006).

1. S. Das, T. Das and S. Chakraborty, “Modeling of coupled momentum, heat and solute Transport during DNA hybridization in a microchannel in presence of electro-osmotic effects and axial pressure gradients”, Microfluidics and Nanofluidics 2, 37 (2006).

Soft Matter Back Cover Article (January 2017)


PCCP Front Cover Article (August, 2016)



Colloids and Surfaces B Cover Article (April, 2015)



Soft Matter Cover Article (August, 2013)

3.  S. Das, T. Das, and S. Chakraborty, “Micfrofluidics based DNA hybridization” in Microfluidics and Microscale Transport Processes Ed. Suman Chakraborty, Taylor and Francis (2012).

2. S. Das, J. Chakraborty, and S. Chakraborty, “Electrokinetics in narrow confinements”, in Microfluidics and Microscale Transport Processes Ed. Suman Chakraborty, Taylor and Francis (2012).

1. S. Das and Suman Chakraborty, “Polymer transport in nanochannels”, in Microfluidics and Nanofluidics Handbook: Fabrication, Implementation and Applications-Vol II. Eds. Sushanta K. Mitra and Suman Chakraborty, Taylor and Francis (2012).

PhD Thesis


MS Thesis

1. Joseph Eugene Andrews (Graduated Fall, 2016; Thesis Title: WETTING OF GRAPHENE; Abstract)